A scalar potential formulation and translation theory for the time-harmonic Maxwell equations
نویسندگان
چکیده
We develop a computational method based on the Debye scalar potential representation, which efficiently reduces the solution of Maxwell’s equations to the solution of two scalar Helmholtz equations. One of the key contributions of this paper is a theory for the translation of Maxwell solutions using such a representation, since the scalar potential form is not invariant with respect to translations. The translation theory is developed by introducing ‘‘conversion’’ operators, which enable the representation of the electric and magnetic vector fields via scalar potentials in an arbitrary reference frame. Advantages of this representation include the fact that only two Helmholtz equations need be solved, and moreover, the divergence free constraints are satisfied automatically by construction. Truncation error bounds are also presented. The availability of a translation theory and error bounds for this representation can find application in methods such as the Fast Multipole Method. For illustration of the use of the representation and translation theory we implemented an algorithm for the simulation of Mie scattering off a system of spherical objects of different sizes and dielectric properties using a variant of the T-matrix method. The resulting system was solved using an iterative method based on GMRES. The results of the computations agree well with previous computational and experimental results. 2006 Elsevier Inc. All rights reserved.
منابع مشابه
ON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY
The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...
متن کاملنظریه میدان اسکالر کلاسیک با تقارن همدیس و پتانسیل نامثبت
We review the conformal symmetry group and investigate the isomorphism between the conformal group and O( D,2 ) . We study the classically conformal invariant scalar theory in D -dimensions with a non-positive potential . We solve the equations of motion by assigning O(D-1, 2)symmetry to the classical solutions with broken translational symmetry in all directions. Then we consider a six d...
متن کاملEfficient FMM accelerated vortex methods in three dimensions via the Lamb-Helmholtz decomposition
Vortex-element methods are often used to efficiently simulate incompressible flows using Lagrangian techniques. Use of the FMM (Fast Multipole Method) allows considerable speed up of both velocity evaluation and vorticity evolution terms in these methods. Both equations require field evaluation of constrained (divergence free) vector valued quantities (velocity, vorticity) and cross terms from ...
متن کاملStabilized interior penalty methods for the time-harmonic Maxwell equations
We propose stabilized interior penalty discontinuous Galerkin methods for the indefinite time–harmonic Maxwell system. The methods are based on a mixed formulation of the boundary value problem chosen to provide control on the divergence of the electric field. We prove optimal error estimates for the methods in the special case of smooth coefficients and perfectly conducting boundary using a du...
متن کاملHigh order boundary integral methods for Maxwell’s equations using Mi- crolocal Discretization and Fast Multipole Methods
An efficient method to solve time harmonic Maxwell’s equations in exterior domain for high frequencies is obtained by using the integral formulation of Després combined with a coupling method (MLFMD) based on the Microlocal Discretization method (MD) and the Multi-Level Fast Multipole Method (MLFMM) [1]. In this paper, we consider curved finite elements of higher order in the MLFMD method. More...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 225 شماره
صفحات -
تاریخ انتشار 2007